A pharmacometric approach to investigate the impact of methylxanthine abstinence and caffeine consumption on CYP1A2 activity.
نویسندگان
چکیده
This study aimed to investigate the impact of methylxanthine abstinence (MA) periods on CYP1A2 activity in individuals with varying levels of caffeine consumption through development of a population pharmacokinetic model of caffeine and its major metabolite paraxanthine. This study developed and evaluated a mixed-effects pharmacokinetic model for caffeine and paraxanthine concentration-time data derived from a sequential single-dose cross-over study in healthy male volunteers (n = 30) who received oral 100 mg caffeine doses. Participants received caffeine with and without a MA period. Participants were classified as low (0-100 mg/d), medium (100-200 mg/d), or high (>200 mg/d) caffeine consumers (LCCs, MCCs, or HCCs, respectively). All caffeine and paraxanthine concentration-time data were simultaneously modeled. Caffeine pharmacokinetics was described by a two-compartment model with first-order absorption and two first-order elimination pathways. Paraxanthine was described by a one-compartment model with first-order absorption and elimination. Among LCCs (n = 16) and MCCs (n = 9), there was no difference in the mean (95% confidence interval) total apparent caffeine clearance (CL) between the MA period [LCCs: 6.88 (5.61-8.16 l/h); MCCs: 10.09 (7.57-12.60 l/h)] versus the no MA period [LCCs: 6.22 (4.97-7.46 l/h); MCCs: 9.68 (7.12-12.24 l/h)]. The mean CL among HCCs (n = 5) was considerably higher in the MA period [10.48 (5.62-15.33 l/h)] compared with the no MA period [6.30 (3.40-9.20 l/h)] (P < 0.05). The decrease in CL in the no MA period among HCC appears to be due to alternative caffeine elimination pathways, rather than CYP1A2.
منابع مشابه
Dmd053074 1957..1966
This study aimed to investigate the impact of methylxanthine abstinence (MA) periods on CYP1A2 activity in individuals with varying levels of caffeine consumption through development of a population pharmacokinetic model of caffeine and its major metabolite paraxanthine. This study developed and evaluated a mixed-effects pharmacokinetic model for caffeine and paraxanthine concentration-time dat...
متن کاملAssessment of CYP1A2 enzyme activity in relation to type-2 diabetes and habitual caffeine intake
BACKGROUND Coffee consumption is a known inducer of cytochrome P450 1A2 (CYP1A2) enzyme activity. We recently observed that a group of type-2 diabetes patients consumed more caffeine (coffee) on a daily basis than non-type-2 diabetes controls. Here, we investigated whether type-2 diabetes cases may metabolize caffeine faster than non-type-2 diabetes controls. METHODS To estimate CYP1A2 enzyme...
متن کاملThe Mediating Effects of Caffeine Ingestion and Post-Activation Performance Enhancement on Reactive Dive Times in Goalkeepers
Background. The reactive abilities of goalkeepers are crucial and may directly impact match results. Therefore, research on factors that may enhance goalkeeper performances during diving tasks (DT) and how these factors are mediated would provide valuable information for coaches and goalkeepers. Objectives. The purpose of this investigation was to: (i) assess the impact of caffeine consumption...
متن کاملCytochrome P4501A2: enzyme induction and genetic control in determining 4-aminobiphenyl-hemoglobin adduct levels.
Cytochrome P4501A2 (CYP1A2) activity may be related to bladder cancer risk through metabolic activation of aromatic amines, such as 4-aminobiphenyl (ABP), to reactive intermediates that can form DNA and hemoglobin (Hb) adducts. In the context of a study on smoking and bladder cancer risk, 97 healthy male volunteers were investigated. CYP1A2-dependent N-oxidation activity was measured using a mo...
متن کاملORIGINAL CONTRIBUTION Coffee, CYP1A2 Genotype, and Risk of Myocardial Infarction
EPIDEMIOLOGIC STUDIES EXAMINing the association between coffee consumption and risk of myocardial infarction (MI) have been inconclusive. Coffee is a major source of caffeine (1,3,7-trimethylxanthine), which is the most widely consumed stimulant in the world and has been implicated in the development of cardiovascular diseases such as acute MI. However, coffee contains a number of other chemica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 41 11 شماره
صفحات -
تاریخ انتشار 2013